Microscopic mechanism of DNA damage searching by hOGG1
نویسندگان
چکیده
The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine ((o)G) DNA glycosylase 1 (hOGG1), which repairs mutagenic (o)G lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.
منابع مشابه
Direct visualization of a DNA glycosylase searching for damage.
DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA g...
متن کاملEscherichia coli FPG and human OGG1 reduce DNA damage and cytotoxicity by BCNU in human lung cells.
The pulmonary complications of 1,3-N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU) are among the most important dose-limiting factors of BCNU-containing cancer chemotherapeutic regimens. BCNU damages DNA of both cancer cells and normal cells. To increase the resistance of lung cells to BCNU, we employed gene transfer of Escherichia coli formamidopyrimidine-DNA glycosylase (FPG) and human 8-oxoguan...
متن کاملMitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells.
Oxidant-induced death and dysfunction of pulmonary vascular cells play important roles in the evolution of acute lung injury. In pulmonary artery endothelial cells (PAECs), oxidant-mediated damage to mitochondrial DNA (mtDNA) seems to be critical in initiating cytotoxicity inasmuch as overexpression of the mitochondrially targeted human DNA repair enzyme, human Ogg1 (hOgg1), prevents both mtDNA...
متن کاملhOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII.
The European Standards Committee on Oxidative DNA Damage (ESCODD) recommended the use of the lesion-specific repair enzyme, formamidopyrimidine DNA-glycosylase (FPG) in the comet assay to detect oxidative DNA damage. In the present study, FPG was compared with endonuclease III (ENDOIII) and human 8-hydroxyguanine DNA-glycosylase (hOGG1) for the ability to modify the sensitivity of the comet ass...
متن کاملAssociation of DNA Damage Repair Gene Polymorphisms hOGG1, XRCC1and p53 with Sickle Cell Disease Patients in India
BACKGROUND Oxidative stress constitutes one of the significant cause of vaso-occlusive clinical episodes in sickle cell disease (SCD) patients. It brings about the generation of reactive oxygen species and consequent damage to DNA. DNA damage repair genes such as hOGG1, XRCC1 and p53 play an important role in the repair of DNA damage during oxidative stress. However, it is not known as to the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014